
Satnam Singh
satnam@google.com

Hardware Design
and Verification with
Cava

mailto:satnam@google.com

Silver Oak Team

Ben Blaxill Jade Philipoom Dayeol Lee
(Berkley)

Samuel Gruetter
(MIT)

Interactive Online Cava Tutorial

P 5

5

https://project-oak.github.io/silveroak/demo/tutorial.html

The Problem

data encrypted at rest

data encrypted at rest

data encrypted in transit

privileged access

unrestricted access

attached
accelerators
(GPU,
crypto, ML)

???

Computing in a secure enclave
(Compute average without disclosing
individual numbers)

data encrypted at rest
Logically separate CPU
and memory, limited I/O
under policy, isolated
memory, remote
attestation.

Regular CPU, Linux,
peripherals, I/O etc.

server in the cloud

public network

mobile device

7
3

8

6

(7 + 3 + 8) / 3 = 6

Policy: outside the enclave
only the average of the
numbers seen can be
observed, not the individual
numbers.

6

Federated Learning

A (Silicon) Root of Trust

The set of inherently trusted
functions within a platform.

A silicon root of trust is a chip,
below even the BIOS firmware,
that provides those trusted
functions.

Public/hybrid/
private cloud

Software
infrastructure

Datacenter
equipment

Silicon
root of

trust

OpenTitan
More transparent, trustworthy,
and secure RoT chip design

OpenTitan is the first open source
silicon project building a transparent,
high-quality reference design for
silicon root of trust (RoT) chips.

11

A radically different approach...

P 12

12

A radically different approach...

P 13

13

● Specifications as dependently-typed programs in
Coq/Gallina.

● Implementations as dependently-typed programs in
Coq/Gallina.

● Proofs about relationship between specs and programs.
● Aggressive poof automation.
● Our specs: programs over lists representing streams of

values for a singly-clocked synchronous circuit.
● Our implementation: extraction from Coq DSL to

SystemVerilog.
● Verify “programs”, not “the compiler”

P 14

14

bfly r 1 = r
bfly r n = ilv (bfly r (n-1)) >-> evens r

sorter cmp 1 = cmp
sorter cmp n = two (sorter cmp (n-1)) >->
 sndList reverse >-> bfly cmp
n

Cava = Coq + Lava

28

Definition nand2_gate := and2 >=> inv.

Kleisli arrow

Definition nand2_gate_alt `(a, b) : m (signal bit) :=
 x <- and2 (a, b) ;;
 y <- inv x ;;
 ret y.

30

An ripple-carry adder

// Cava auto-generated SystemVerilog. Do not hand edit.
module xadder_tree32_8(
 input logic[7:0] inputs[32],
 output logic[7:0] sum
);

 timeunit 1ns; timeprecision 1ns;

 logic zero;
 logic one;
 logic[743:0] net;

 // Constant nets
 assign zero = 1'b0;
 assign one = 1'b1;

 assign sum = {net[742],net[739],net[736],net[733],net[730],net[727],net[724],net[721]};
 MUXCY inst_1 (.O(net[743]),.S(net[741]),.CI(net[740]),.DI(net[358]));
 XORCY inst_2 (.O(net[742]),.CI(net[741]),.LI(net[740]));
 xor inst_3 (net[741],net[358],net[718]);
 MUXCY inst_4 (.O(net[740]),.S(net[738]),.CI(net[737]),.DI(net[355]));
 XORCY inst_5 (.O(net[739]),.CI(net[738]),.LI(net[737]));
 xor inst_6 (net[738],net[355],net[715]);
 MUXCY inst_7 (.O(net[737]),.S(net[735]),.CI(net[734]),.DI(net[352]));
...

Generation of SystemVerilog from Cava that integrates into an
existing system

pa
ss

th
ru

1Mb Flash

rv_dm core_ibex rv_plic

TLUL bus interconnect

32kb ROM
aes spi_device

spi_host

64kb
SRAM

ec/rsa

rv_timer

usb

gpio

dma

entropy

pinmux

i2c

keymgr

Ǆash_ctrl

uaǈ

padctrl

aleǈ_hdlr volt_sense

fuse_ctrl temp_sense shieldOTP/Fuse

JTAG
pins Reset pin

MIO pins

USB_Device pins

SPI_Host pins

SPI_Device pins

38

39

40

41

42

Only pinmux utilization (original design)

Cava generated (from Coq) Silver Oak
pinmux

Pinmux re-implementation

Passses formal equivalenace check (LEC)

Likewise for AES subcomponents: aes_sub_bytes

Original SystemVerilog aes_sub_bytes

Cava version from Coq implementation with
formal specification and proof

AES spec : Coq vs FIPS
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

 begin

 byte state[4,Nb]

 state = in

 AddRoundKey(state, w[0, Nb-1])

 for round = 1 step 1 to Nr–1

 SubBytes(state)

 ShiftRows(state)

 MixColumns(state)

 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

 end for

 SubBytes(state)

 ShiftRows(state)

 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

 out = state

 end

Definition cipher (first_key last_key : key)

 (middle_keys : list key) (input : state) : state :=

 let st := input in

 let st := add_round_key st first_key in

 let st := fold_left

 (fun (st : state) (round_key : key) =>

 let st := sub_bytes st in

 let st := shift_rows st in

 let st := mix_columns st in

 let st := add_round_key st round_key in

 st) middle_keys st in

 let st := sub_bytes st in

 let st := shift_rows st in

 let st := add_round_key st last_key in

 st.

Lemma inverse_cipher_id :

 forall first_key last_key middle_keys block,

 equivalent_inverse_cipher

 last_key first_key (map inv_mix_columns_key (rev middle_keys))

 (cipher first_key last_key middle_keys block) = block.

Equivalent inverse cipher implements inverse

Proof.

 cbv [cipher equivalent_inverse_cipher].

 apply add_round_key_cancel. revert first_key block.

 induction middle_keys; intros; listsimpl.

 { repeat t. }

 { rewrite IHmiddle_keys. repeat t. }

Qed.

Proof statement

Proof body

Co-Design of hardware and software

P 49

Model and
verification of
hardware and

software in a single
system

RTL (SystemVerilog)

Extracted software as
RISC-V or C CPU-based system

Peripherals, crypto
accelerators etc.

Formally verified software and hardware extracted from Coq

pa
ss

th
ru

1Mb Flash

rv_dm core_ibex rv_plic

TLUL bus interconnect

32kb ROM
aes spi_device

spi_host

64kb
SRAM

ec/rsa

rv_timer

usb

gpio

dma

entropy

pinmux

i2c

keymgr

Ǆash_ctrl

uaǈ

padctrl

aleǈ_hdlr volt_sense

fuse_ctrl temp_sense shieldOTP/Fuse

JTAG
pins Reset pin

MIO pins

USB_Device pins

SPI_Host pins

SPI_Device pins

https://github.com/project-oak/oak-hardware

PLDI 2021 Lightbulb paper from MIT

PLDI 2021 Lightbulb paper from MIT

HW/SW Co-design in a single model

P 53

53

● Firmware written in bedrock2 from MIT
● RISC-V code generated from bedrock2, with semantics in

Coq
● Hardware peripherals in Coq, produced using the Cava

hardware DSL
● Model HW/Sw interface via memory-mapped I/O and

TileLink bus-interface
● AES, UART and other OpenTitan peripherals

Fragment of AES OpenTitan firmware (C vs. bedrock2)

P 54

54

 void aes_iv_put(const void *iv) {
 // Write the four initialization vector registers.
 for (int i = 0; i < AES_NUM_REGS_IV; ++i) {
 REG32(AES_IV0(0) + i * sizeof(uint32_t)) = ((uint32_t *)iv)[i];
 }
 }

 Definition aes_iv_put : func :=
 let iv := "iv" in
 let i := "i" in
 ("b2_iv_put",
 ([AES_IV0; AES_NUM_REGS_IV; iv], [], bedrock_func_body:(
 i = 0 ;
 while (i < AES_NUM_REGS_IV) {
 output! WRITE (AES_IV0 + (i * 4), load4(iv + (i * 4)));
 i = i + 1
 }
))).

Status

P 55

55

● Formal specification in Coq, Cava implementation in Coq,
proof in Coq for AES hardware peripheral done (but not yet
for masked-write version).

● Extracted SystemVerilog passes all OpenTitan simulation
tests (Verilator).

● Circuit synthesizes and implements in Xilinx FPGAs tools to
produce drop-in replacement of the same size and speed as
original.

● Drop-in replacement circuits works on FPGA as drop-in
replacement.

● Now tackling firmware i.e. aes.c as well as aes.sv
● Weakness: control (esp. for TileLink bus protocol)

Precursor

P 56

56

Long term goal: a secure communication device

P 57

57

● A “blueprint” for a secure communication device, design
downloadable from GitHub.

● A secure core based on OpenTitan, with cycle-by-cycle
semantics in Coq based on Cava and bedrock2

● A screen and keyboard, high firmware (bedrock2) and
hardware (Cava) for UART, IC2, USB etc.

● An “application” layer based on tock OS on top of
OpenTitan that provides UI, wireless etc. and a lower level
of assurance, which runs Oak policies for the secure
processing and communication of private data.

● Same high assurance nucleus can be used for many other
IoT applications

