
HardBlare, a hardware/software co-design approach for
Information Flow Control

Guillaume Hiet and partners

February 18, 2020

1



CIDRE research group
11 permanent researchers, 3 Post-doc, 12 PhD students

https://team.inria.fr/cidre/

Attack comprehension
Hardware attacks (side channel, fault injection)
Malware analysis (Android & Windows)

Attack detection (anomaly-based intrusion detection)
Low-level software (OS, firmware)
Distributed systems (cloud, Industrial Control Systems, etc.)
Detection of ransomware attacks

Attack resistance
Formal methods for security
Deceptive security
Blockchain

2

https://team.inria.fr/cidre/


Security of Software/Hardware Interfaces

Low Level Components

App 1 App 2 App N…

OS

Firmware

Hardware

Hardware-based Security Mechanisms
Rely on hardware mechanisms (e.g. CPU rings, SMM, etc.)
Used by trusted software to protect from non-trusted code

3



Security of Software/Hardware Interfaces

Characteristics of HSM
Security mechanisms implemented in hardware → more secure, lower
runtime overhead
Complexe interactions with other software and hardware components
→ potential vulnerabilities

Research Tracks
Can we trust existing HSM (e.g. SMM, SGX, TrustZone, etc.)?

SpecCert: Specifying and Verifying Hardware-based Security
Enforcement
FreeSpec: Modular Verification of Components

Can we propose new HSM?
Collaboration with HP Labs: Co-processor-based Behavior Monitoring
of SMM Code
HardBlare: an Efficient Hardware-assisted DIFC for Non-modified
Embedded Processors

4



HardBlare project
General information

Started in October 2015. Duration: 3 years (some works are still
ongoing)
Funding: 2 PhD students and 1 PostDoc

Partners
CentraleSupélec, IETR (SCEE) @ Rennes

Pascal Cotret (Ass. Prof.) now at ENSTA Bretagne
Muhammad Abdul Wahab (PhD student) now R&D engineer at
Ultraflux

CentraleSupélec/Inria, IRISA (CIDRE) @ Rennes
Guillaume Hiet (Ass. Prof.)
Mounir Nasr Allah (PhD student)

UBS, Lab-STICC @ Lorient
Guy Gogniat (Full Prof.), Vianney Lapôtre (Ass. Prof.)
Arnab Kumar Biswas (Postdoc) now research Fellow at NUS

5



How to secure embedded systems?
The best strategy would be to avoid vulnerabilities
Indeed many preventive approaches have been proposed

Static analysis of software code
Dynamic verification enforced by the runtime environment
Cryptography, etc.

In practice
Preventive approaches are not systematically used (e.g. a lot of
software are still using C)
They are not sufficient to prevent all the attacks (e.g. using Java or
OCaml does not prevent logical errors)

It is also important to monitor systems to detect intrusions at
runtime
Detecting attacks or intrusions is just the first step of reactive security
and alerts could be used to

Notice security incidents to administrators
Stop or modify execution
Put the system in quarantine, etc.

6



Dynamic Information Flow Tracking

Motivation
A generic approach to detect attacks against confidentiality and integrity at
different levels

DIFT principle
We attach labels called tags to containers and specify an information
flow policy, i.e. relations between tags
At runtime, we propagate tags to reflect information flows that occur
and detect any policy violation

7



Different levels of DIFT

Coarse-grained approach: OS level
Monitor system calls: containers = files, memory pages
Pros & cons
+ Monitor in kernel side protected from userland
+ Tagging files is easier for the end user to specify its security policy
+ Low runtime overhead
- Over-approximation of application internal behavior
- Cannot detect low-level attacks

Fine-grained approach: machine language level
Monitor instruction execution: containers = registers, memory words
Pros & cons
+ Precise monitoring
- Huge overhead and no isolation if implemented in software
- Cannot tag persistent storage (files) if implemented in hardware

8



Originality of our approach
Combines hardware/software fine-grained DIFT with OS-level
tagging to associate labels to registers, memory and files

Helps the end-user to specify the security policy
Saves the security contexts between reboots

Implements tag propagation in an external co-processor to isolate
the monitor with no modification of the main CPU
Main challenge: isolating the monitor in a dedicated co-processor
creates a semantic gap between the monitor and the monitored
system:

How can the isolated co-processor extract some information from the
main CPU to infer the behavior of the monitored code?

Solve the semantic-gap issue by an original combination of
approaches:

pre-computing of annotations during the compilation of applications
sending of branching information using hardware trace mechanisms
sending of addresses of read/write accesses using instrumentation of
the application code

9



Threat model

We target software attacks that directly modify the values of
containers (files, registers, memory)
We do no handle physical attacks (e.g. fault injection using laser or
physical side channel attacks)
We only monitor applications

The OS kernel is part of our TCB
We could reduce the TCB to the kernel code that manages file tags
and communicates with the co-processor

10



Use case and technological choices

Use case
Embedded systems using rich OS in security critical contexts

Such systems cannot be redeveloped from scratch for economical
reasons
Security concerns allow important modifications of existing systems if
some level of compatibility with applications and drivers is achieved

Software technological choices
Linux embedded systems compiled with LLVM using Yocto

Open-source: implementation and evaluation of our approach
Very popular in embedded systems and simpler than Android

Hardware technological choices
Digilent ZedBoard using Xilinx ZYNQ SoC
Combine two hardcores (ARM Cortex A9) with an FPGA

11



PTM Traces

CPU Cortex-A9 DIFT Monitor

PTM
Traces

PFT Decoder

(basic block addresses)

DIFT Core

System RAM

12



PTM Traces

13



Static Analysis

Problem
We need to know what’s happened between two jumps

Solution
During compilation we also generate annotations that will be executed by
the co-processor to propagate tags

Examples :
add r0, r1, r2 ⇒ r0 ← r1 ∪ r2
and r3, r4, r5 ⇒ r3 ← r4 ∪ r5

14



Static Analysis

CPU Cortex-A9 DIFT Monitor

PTM

User application Annotations

Traces

PFT Decoder

Memory tags

Tag Register File

(basic block addresses)

DIFT Core

System RAM

Clang/LLVMSource code

15



Instrumentation

Problem
Some addresses are resolved/calculated at run-time

Solution
Instrument the code during the last phase of the compilation process
The register r9 is dedicated for the instrumentation
The instrumentation FIFO address is retrieved via a UIO Driver

Examples :

ldr r0, [r2] ⇒ str r2, [r9]
ldr r0, [r2]

str r3, [r4] ⇒ str r5, [r9]
str r3, [r5]

16



Instrumentation: different strategies

Recover memory addresses

Instruction Annotation
ldr r1, [r2, #4] r1 ← mem (r2 + 4)

Two possible strategies
1 Strategy 1: Recover all memory address through instrumentation
2 Strategy 2: Recover only register-relative memory address through

instrumentation

17



Instrumentation strategy 2

Recover only register-relative memory address through instrumentation

Example Instructions Annotations Memory address
recovery

sub r0, r1, r2 r0 = r1 + r2
mov r3, r0 r3 = r0
str r1, [PC, #4] @Mem(PC+4) = r1 CoreSight PTM
ldr r3, [SP, #-8] r3 = @Mem(SP-8) Static analysis
str r1, [r3, r2] @Mem(r3+r2) = r1 instrumented

18



Instrumentation

CPU Cortex-A9 DIFT Monitor

PTM

User application Annotations

Instrumentation

Traces

PFT Decoder

Memory tags

Instrumentation FIFO

Tag Register File

(basic block addresses)

(load/store adresses)
DIFT Core

System RAM

Clang/LLVMSource code

19



RfBLare: handling system calls

Problems
We want to transmit tags from/to the operating system
We want to persistently store tags in the system

Solutions
Intercept syscalls using Linux Security Modules Hooks
Attach labels to files in Extended file attributes
The OS communicates with the co-processor to propagate tags:

When reading data from a file: tag(file)→ tag(buffer)
When writing data to a file: tag(buffer)→ tag(file)

20



RfBLare: System calls

CPU Cortex-A9 DIFT Monitor

PTM

User application Annotations

Instrumentation

System calls

Traces

tag(file) → tag(memory)

HardDrive (file system with extended attributes)
passwd.txt
Tag:

index.html
Tag:

PFT Decoder

Memory tags

Instrumentation FIFO

Tag Register File

Linux Kernel with information flow support (RfBlare)

(basic block addresses)

(load/store adresses)

tag(memory) → tag(file)

DIFT Core

System RAM

Clang/LLVMSource code

21



Software developments

Software
Modification of the Linux kernel:

LSM module to handle file tags
Communication with the co-processor

Patch of the official Linux kernel PTM driver
Initial support of the ARM PTM trace mechanism was incomplete
The patch has been accepted by kernel maintainers a

Modification of the Linux loader (ld.so) to load annotations
Development of a LLVM backend pass

Compute annotations and save them in the elf binary file
Instrument application code to send read/write addresses

All the software code is available on private project git repo
Access can be granted on demand
Will be published on public repo after the integration process

ahttps://lore.kernel.org/patchwork/patch/723740/

22

https://lore.kernel.org/patchwork/patch/723740/


DIFT coprocessor1

Two cores
Dispatcher
TMC (Tag Management Core)

1 2

DIFT Coprocessor

3

Dispatcher

Tag Management Core
(TMC)

Annotations
memory

Tag
memory

TagRR T1,T2

BRAM DDR

Tag
annotations

DDR

Decoded 
trace 

memory

BRAM

1reconfig_18.
23



Use cases: Multiple security policies

TMC
(security policy 2)

Decoded 
trace 

memory
Dispatcher

Tag
memory

DDR

Tag 
annotations

DDR

Tag
memory

DDRBRAM

Annotations
memory

BRAM

TMC
(security policy 1)

Annotations
memory

TagRR T1,T2

TagRR T1,T2

24



Conclusion

Contributions
Recovery of required information for DIFT on hardcore CPU
Dedicated DIFT coprocessor for the ARM architecture
Integration of OS support in the hardware-assisted DIFT
Implementation of the proposed approach on the Zynq SoC
Scalable solution for multiple security policies and
multicore/multiprocessor systems

Perspectives
Finalizing hardware integration and security evaluation
Reducing the TCB, implementing isolation of kernel parts using
TrustZone
Reducing instrumentation overhead (by optimizing the static analysis)

25


	Context and motivations
	General presentation of the project
	Software approach
	Hardware approach

