
Arnaud de Grandmaison, distinguished Engineer; Fred Piry, Lee Smith, Arm Fellows
18th February 2020

Fruitful security from
CHERI and Morello

Morello et la Sécurité des Interfaces Logiciel/Matériel

2 © 2020 Arm Limited

Who has rounded-corner windows at home ?

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY-NC

Why planes don’t have squared-corner windows ?

http://kathleenkirkpoetry.blogspot.com/2011/02/new-window.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.flickr.com/photos/oldpatterns/5993944898
https://creativecommons.org/licenses/by-nc/3.0/

3 © 2020 Arm Limited

Memory safety
• Buffer overflows and memory safety issues have had a way too long history !

• First documented buffer overflow dating from 1972 [Wikipedia]

This Photo by Unknown Author is licensed under CC BY

• 50 years later … where are we standing ?
• Not much has changed
• Both Google and Microsoft recognize that 70% of the

security issues in their products involve / start with a
memory safety issue

• What was a minor annoyance in the 70s is now a financial
drain and a huge security / privacy issue

• The boiling frog metaphor illustrates pretty well the issue.
We need to jump out of the pan !

(Note: no frog has actually been hurt or boiled)

https://en.wikipedia.org/wiki/Buffer_overflow
https://www.flickr.com/photos/purpleslog/2881603057/
https://creativecommons.org/licenses/by/3.0/

4 © 2020 Arm Limited

• Capabilities are essentially fat pointers, i.e. pointers with extra information
• They allow enforcing memory safety at runtime
• They exist since the very beginning of the computer industry, and have been in use for

quite some time actually
• CAP computer at the Cambridge University Computer Lab (1970)
• System/38 from IBM (1978)

• … until they were set aside by segmentation / pagination-based memory management
which was way easier and cheaper to implement back then.

Capabilities to the rescue ! (maybe)

5 © 2020 Arm Limited

Why capabilities ?
• The capability concept has stood the test of time
• They are relatively easy to formalize
• CHERI sketches a plausible path to deployment
• A number of parties, including UK’s NCSC and industry players are showing interest
• Alternatives are looking more speculative, or solve less of the problem or require more

software and/or hardware resources

6 © 2020 Arm Limited

Presentation outline
• A CHERI overview
• The (very) big Morello picture
• A sketch of Morello architecture
• A higher level view on Morello
• Open questions on Morello

7 © 2020 Arm Limited

CHERI overview

8 © 2020 Arm Limited

About CHERI
• CHERI: Capability Hardware Enhanced RISC Instructions

• Started ~ 9 years ago as part of project CTSRD (pronounced "custard") :
• Clean Slate Trustworthy Secure Research and Development
• Goal : Rethinking the hardware-software interface for security,
• a DARPA-funded project (part of DARPA CRASH programme) with Google’s support
• a joint research project of the Cambridge University Computer Laboratory and SRI International

SILM !

http://www.cl.cam.ac.uk/research/security/ctsrd/
http://www.csl.sri.com/

9 © 2020 Arm Limited

• Capabilities are used wherever a pointer / reference is used
• Capabilities include:

• Base, pointer, and size (or limit)
• Access rights : read / write / execute / …

• Instructions manipulating capabilities can only reduce their range and permissions
• Capabilities cannot be forged

• Capabilities are protected by a fragile tag which is cleared when the location is written by a non-
capability instruction

• Only valid capabilities (i.e. tag is set) can be used by the capability instructions and load/store

• Capabilities do not replace MMU and paged memory
• They go on top of it
• Provide fine grained access policy for code and data

Memory capability basics

10 © 2020 Arm Limited

A hardware perspective on CHERI architecture
• CHERI restricts access to memory and system resources within a virtual address space

• Originally (1960s, 1970s) capabilities controlled access to physical memory

• CHERI replaces virtual addresses with memory capabilities that comprise
• A virtual-address pointer component
• A meta-data component that encodes

– (Compressed) bounds (base and limit) on the pointer
– Permissions to use the capability in certain ways (e.g. mutable/immutable)
– Permissions to use the object identified by the capability in certain ways (e.g. R, W, X)

• CHERI can be embedded in any modern 64-bit host ISA: MIPS, Arm’s A64, RISC-V, x86-64…
• See CHERI architecture

• CHERI mostly affects the load & store part of its host ISA
• Some additional instructions operate on capabilities themselves

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

11 © 2020 Arm Limited

A software perspective on CHERI architecture
• CHERI gives spatial safety to programs written in memory-unsafe languages (e.g. C/C++)

• And good hooks for adding temporal safety at a cost similar to garbage collection…
• And weak control-flow integrity (CFI) …

– Similar to A64 with PAC + AUT (reverse CFI) + BTI (forward) or x86 with shadow stack and landing pads

• CHERI supports fine-grain, recursive delegation of access privileges
• Accesses checked by hardware at hardware speed

• CHERI supports secure compartments within a virtual address space
• A lighter weight alternative to compartmentalizing with OS processes
• Compartments are a vital tool to resist security exploits

(c.f. Thomas Dullien’s Weird machines, exploitability, and provable unexploitability –
his assessment implies a need for many, fine-grained compartments…)

• CHERI has formal ISA semantics
• Formalization of architectural security properties is a work in progress

http://www.dullien.net/thomas/weird-machines-exploitability.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-formal.html

12 © 2020 Arm Limited

The (very) big Morello picture

13 © 2020 Arm Limited

In brief, Morello is…
• A specific variety of cherry
• An instruction-set architecture (ISA) derived from Arm’s A64 and Cambridge Computer

Laboratory’s Capability Hardware Enhanced RISC Instructions (CHERI)
[CHERI architecture]

• A Mobile/Server-class ASIC containing multiple Morello-enhanced, Arm CPUs
• Derived from Arm’s Neoverse™ N1 derived from Cortex® A-76

• A development board containing the Morello ASIC
• Derived from an existing, non-public, Arm development board
• The board has the resources to boot Android and act as a low-end server

• A UK government funded project under the Digital Security by Design [DSbD] umbrella
• Approximately £70m committed by government
• More then £100m in kind committed by Morello project industrial partners

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.ukri.org/innovation/industrial-strategy-challenge-fund/digital-security-by-design/

14 © 2020 Arm Limited

The Morello project will…
• Fund creating a Mobile/Server-class ASIC and 500-1,000 development boards

• The number of boards depends on test-chip yield, funding, and component cost (all variable)

• Support evaluation of deployment options and priorities by Arm’s industrial partners
• Public support at the DSbD launch from both Microsoft and Google

• Support evaluation of different software and hardware implementation options
• For example: the Morello board will support two ways to tag memory, one appropriate for Mobile

(no ECC on DRAM) and one appropriate for Server (with ECC on DRAM)

• Support a broad academic research program
• From Computer Science to Social Science…
• From theory/proof/formal to empirical studies of large-scale software…
• Hardware and software…

https://www.ukri.org/innovation/industrial-strategy-challenge-fund/digital-security-by-design/

15 © 2020 Arm Limited

Morello is not …

• Morello is not the final architecture implementation:
• It will be the ONLY implementation of this prototype architecture

• Morello has *NO COMMITMENT* to forward / backward compatibility
• But successful concepts are expected to become part of an ARM architecture extension and/or CHERI

16 © 2020 Arm Limited

Why are we presenting this ?
• Our aim is to:

• Break the cyclic dependency between software and hardware…
• Understand the cost of implementation, deployment and use of these new concepts
• Get useful feedback before committing any variant of it to CHERI or the Arm Architecture

• Because we need:
• Answers to performance questions for a wide range of different usage models
• Compelling examples of Capabilities offering a security / performance improvements

– Backed up by “Red-teams” having attacked the system and demonstrated security of the system
– Compelling in comparison with existing deployed state of the art exploit mitigations

• Understanding of how different languages and run-times can use capabilities
– Not just C and C++, but also Javascript, Java, Rust, …

• Far better understanding of how fine-grained compartmentalisation can be used and supported
• A showcase to encourage other architectures to adopt the same concepts
• Experience of the SoC hardware to implement systems based on the CHERI concepts

17 © 2020 Arm Limited

Morello architecture » CHERI + A64

18 © 2020 Arm Limited

128 127 64 63 32 31 0

W Reg

X Reg

Tag C Reg

Capabilities in storage and on buses

Capabilities in memory
§ 16-byte aligned
§ A 1-bit tag is stored separately (in separate tag memory, or using the ECC code on the 128 bits)

Tag is fragile
§ Preserved by specific instructions, cleared or ignored by any other access to the location
§ De-referencing a capability with no tag causes a machine exception (capability fault)

Capabilities in registers and on buses

19 © 2020 Arm Limited

A draft Morello capability in detail
Details of field sizes and permissions might change

Tag Permissions Object type
Value [63:0]

128 127:110 109:95

Bounds [86:56]

94:64

Flags

63:56

Bounds [55:E+16]

55:0

Permission
Load
Store
Execute
LoadCap
StoreCap
StoreLocalCap
Seal
Unseal

Permission
System
BranchUnseal
CompartmentID
MutableLoad
User[4]
Global
Executive
…

Simultaneous
views of 63:0

Object type
0: Capability is mutable
Non-0: Capability is sealed

Not all combinations of
bounds and value can be
represented

20 © 2020 Arm Limited

A draft Morello capability in detail
Details of field sizes and permissions might change

Tag Permissions Object type
Value [63:0]

128 127:110 109:95

Bounds [86:56]

94:64

Flags

63:56

Bounds [55:E+16]

55:0

Permission
Load
Store
Execute
LoadCap
StoreCap
StoreLocalCap
Seal
Unseal

Permission
System
BranchUnseal
CompartmentID
MutableLoad
User[4]
Global
Executive
…

Simultaneous
views of 63:0

Object type
0: Capability is mutable
Non-0: Capability is sealed

Not all combinations of
bounds and value can be
represented

21 © 2020 Arm Limited

A draft Morello capability in detail
Details of field sizes and permissions might change

Tag Permissions Object type
Value [63:0]

128 127:110 109:95

Bounds [86:56]

94:64

Flags

63:56

Bounds [55:E+16]

55:0

Permission
Load
Store
Execute
LoadCap
StoreCap
StoreLocalCap
Seal
Unseal

Permission
System
BranchUnseal
CompartmentID
MutableLoad
User[4]
Global
Executive
…

Simultaneous
views of 63:0

Object type
0: Capability is mutable
Non-0: Capability is sealed

Not all combinations of
bounds and value can be
represented

22 © 2020 Arm Limited

• Vanilla CHERI capabilities are 256(+1) bits fat
• A reasonable choice research-wise from CUCL as it allows easy exploration
• From an industrial point of view, we believe this is way too large to be deployed

• Morello capabilities are 128(+1) bits fat
• Achieved using a pointer bound compression technique similar to floating point encoding

Compressed bounds

23 © 2020 Arm Limited

Bounds compression – the essence of it

Value [63:0]
Bounds [86:56]

94:64

Bit 55

63:56 55:0

See CHERI Concentrate: Practical Compressed Capabilities – Morello will be different in detail

0/1
T[13:0]

T[13:3], E[5:3]

B[15:0]

B[15:3], E[2:0]

Bounds [55:E+16] B << E E x 0

Base [63:0]

Used to calculate
B << E

Using B, E derived
from Bounds[86:56]

Not all bounds values are representable, constraining how far Value can be taken out of bounds
before it is impossible to represent the derived capability

Bounds [55:E+16]

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf

24 © 2020 Arm Limited

• A64:
• Aarch64 ISA + minimum set of instructions to operate on capabilities
• Memory accesses are address-based by default (pointer = address)

• C64:
• Aarch64 ISA + minimum set of instruction to operate on pointers
• Memory accesses are capability-based by default (pointer = capability ¹ address)
• Address-based memory accesses are interpreted relative to DDC

Morello machine states & instructions

A64

AArch64
operations add x0, x1, x2

memory load x0, [x1]

Extension

operations add c0, c1, x2

memory
load x0, [c1]

load c0, [c1]

C64
add x0, x1, x2

load x0, [c1]

add c0, c1, x2

load x0, [x1]

load c0, [x1]

25 © 2020 Arm Limited

• Same instruction encoding, but “address” interpretation depends on the machine state

Morello machine states & instructions --- intended use

C64
• Operate in a capability-based world – pointer ¹ address
• Minimum set of instructions to operate on pointers as

(DDC-relative) addresses

A64
• Legacy, AArch64 support – pointer = address
• Minimum a set of instructions to operate on capabilities

Inter-operate between capability and legacy modes at a protection boundary,
e.g. EL0 / EL1.

26 © 2020 Arm Limited

A glimpse at some instructions
• Getters:

gclen x0, c1 ; Get length
gcperm x0, c1 ; Get permissions

• Setters:
scperm c1, c0, x2 ; Set permission (reduce only)
scbnds c1, c0, x2 ; Set bounds (reduce only)

• Memory accesses:
ldr x1, [c0, #8] ; load

• Control flow:
blr c0 ; Branch & Link

27 © 2020 Arm Limited

A higher level view

28 © 2020 Arm Limited

Fine grained protection – Memory management

• With programming languages & abstractions, software carves up an address space into
objects and references between those objects
• Some languages are better than others at providing some guarantees…
• But this stays a software construct, with little to no hardware enforcement

• Hardware should enforce correct use of references
• Spatially, between objects
• Temporally, as the memory layout evolves in time and memory gets repurposed
• At hardware speed !

• Ideally tooling and language driven…

Object A Object D

Object C

Object B

29 © 2020 Arm Limited

Fine grained protection – Compartments

• Ideally, in any address space in any EL / security state / …
• And as strong as MMU based compartments (VMs, processes)

• Ideally, cheap to create and destroy compartments
• Encourage the use of lots of small compartments, reduce the attack surface for all types of exploits

• Ideally, supporting different trust models
• At least symmetric and asymmetric distrust…

code

private
data

code

private
data

shared
data

Transfer of control to
specific entry points only private

code
private
code

30 © 2020 Arm Limited

Compartments – the essence of it

• The memory image of a compartment is all the memory transitively reachable from the
root capabilities it was started with.

• Transfer of control between compartments requires:
• Atomically (from the perspective of code executing at this exception level) jumping to an entry (resp.

resume) point in the other compartment
• Swapping the memory context so that the memory from the first compartment is inaccessible (other

than transferring control back to the origin, or thru capabilities passed explicitly as arguments) when
entering the second compartment.

31 © 2020 Arm Limited

Architectural challenges and opportunities
• Instructions to transfer control between compartments (security domains) give

opportunities to purge or limit speculative state and the opportunity to exploit it
• [CHERI architecture] states: In order to achieve compartmentalization, and not simply isolation,

CHERI’s selective nonmonotonic mechanisms can be used:
– exception handling
– jump-based invocation

• CHERI also defines a compartment ID register that hardware can monitor
• Whatever the mechanism, and whatever the distrust relationship between compartments,

natural, identified points in the instruction stream are needed to tame speculative execution
attacks between security domains

– Without first-class compartments, the only mitigation hook is a speculation barrier instruction, resembling
those introduced in v8.5 of Arm’s 64-bit architecture

• It remains micro-architecturally challenging to effectively use this architectural opportunity !

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

32 © 2020 Arm Limited

• Hardware enforced const qualifier:
void function(const Object *p)

• Give only access to a smaller range of memory:
struct S { /* some fields */ };
void f(struct S *p);
struct S *tab[10] = malloc(10 * sizeof(struct S));
for(int i=0; i<10; i++)

f(&tab[i]); // f can not access outside the object it was given !

• Compartment unsafe libraries / untrusted code:
libjpeg_decode(&MyShip, “~/Download/alien.jpeg”); // No one will hear you scream

• Compartment safe / trusted code:
Err = EverCrypt_AEAD_encrypt(…);

• Garbage collection

What can / could be done better with capabilities ?

33 © 2020 Arm Limited

Compilation and language issues
• C/C++ fundamental assumption that pointer = address = integer
• Pointer provenance
• *cpy /*move functionality needs extra care to preserve tags
• Code generation tactics (e.g. for managing stack frames) may make material differences

to resisting the first essential step in an exploit chain that breaks memory safety
• This is how 2/3 of today’s exploits begin (according to Google and Microsoft)

34 © 2020 Arm Limited

• No !
• ABI impacts ?
• CHERI allows plain old pointers to coexist with fat pointers, in order to ease the

migration… But how to handle that ?
• Linking applications is becoming even more interesting...
• Loading applications and “seeding” the capabilities…
• This all requires changes in the OS / libc / ld.so / debuggers / traces / …
• People distributing full environment (Android, …) need to be involved as they will have

to manage a transition. On the other hand, they have a strong incentive to improve
security.

• Memory safety is only a part of the security problem --- a significant one though

Are all problem solved then ?

35 © 2020 Arm Limited

• We have recompiled many large code bases. Most had to be “fixed”…
• Most of the world’s software has migrated to 64bits pointers, so moving to 128bits pointers will be

easy because they have learned the lesson, haven’t they…
• Lots of code bases built for CHERI exhibited out of bounds access…
• People are doing smart horrible things with pointers
• The good point is … this shows right away that CHERI is useful !

• Some applications play fast and loose with pointer provenance…
• See, for example, Exploring C Semantics and Pointer Provenance

• The above led to some innovative research into what programmers believe about C
• See, for example, Into the depths of C: elaborating the de facto standards

Experience return J

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201901-popl-cerberus.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201606-pldi2016-clanguage.pdf

36 © 2020 Arm Limited

Open questions on Morello

37 © 2020 Arm Limited

• To take full advantage of capabilities, software must be rewritten
• Is it still worth rewriting it in C/C++ or should it be done with Rust (for example) ?
• Can Rust (or Rust competitor) benefit from capabilities ?

• (How) do proven components compose ?
• For example, is SeL4 + CHERI + Morello secure ?
• What does “secure” mean in this context ?
• How to prove it ?

• Side channels (timing, EM, power) & fault injection
• Are there single points of failure in the architecture ?

– That is, failure points independent of micro-architectural implementation
– Or is it all about the micro-architecture ?

• Now is the right time to think and fix before it moves into mainstream (e.g. Arm) architecture

Open questions

38 © 2020 Arm Limited

• How to analyze and automate compartmentalization of large existing code base ?
• What’s the relationship between compartments and enclaves ? Should we revisit the

whole usual nicely layered software stacks ?
• …

More open questions

39 © 2020 Arm Limited

Tentative roadmap
Dates are aggressive targets that may slip for any number of reasons

• September/October 2020:
• Morello specification made public, with a code-translation model of the platform, code-generation

tools, tools and basic software stack
• Tools and software may appear in public repositories earlier
• First wave of UK academic research projects should have been funded from June 2020 and should be

preparing for late 2021…

• September/October 2021:
• Morello demonstrator boards available
• Broad spectrum empirical research with Morello begins !

40 © 2020 Arm Limited

Call to arms !
• CHERI and Morello, if successful, will have a large impact on the whole computer

ecosystem
• All are welcome to participate on the CHERI / Morello project.

• Before getting to some industrial deployment, it would be great to have research more
widely involved !

• Your expertise and point of view matters
• You have a long term view, and can advise on the next possible steps after deployment
• Now is the right time to avoid doing (again) fundamental mistakes that will have to be

patched / mitigated for the next 50 years.

41 © 2020 Arm Limited

How to participate ?
• Arm is interested in collaboration !

• … but if CHERI/Morello is successful, we will be maxed out by our business partners and this will
severely limit our bandwidth

• Nonetheless, as this affects the whole ecosystem:
• Stay alert to UK universities getting funding under the DSbD umbrella and seek to collaborate with

them. Cambridge and Edinburgh are in from the beginning.
– Lots of uncertainties in those post-Brexit times on the administrivia for collaboration and funding
– But UK universities are keen for collaboration with European researchers

• Talk with Arm’s partners who have publicly pledged interest in Morello:
– Google
– Microsoft (via MSR-Cambridge)

• No harm talking to other partners whom you may have an existing relationship with …
• If all else failed, talk to us, we can attempt to make the connections

42 © 2020 Arm Limited

… over to you now !

This Photo by Unknown Author is licensed under CC BY-SA-NC

The frog is free and safe … in an unsecure world

http://lancetre.vefblog.net/8.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2020 Arm Limited

