

RISC-V Security

Yann LOISEL, Security Architect, SiFive

January 2020

CONFIDENTIAL - COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

Silicon At The Speed Of Software

Founded By The Inventors of RISC-V

SiFive's founders are the same UC Berkeley professor and PhDs who invented and have been leading the commercial implementation of the RISC-V Instruction Set Architecture (ISA) since 2010

SiFive

RISC-V security: motivations

- RISC–V ISA designed to address existing ISAs issues about security/secrecy/lack of rationale
- RISC–V ISA design built on many years of experiences, mistakes, lack of anticipation

- RISC–V ISA future backed by the RISC-V Foundation, managing the standards and the assets
- RISC–V ISA open to security audits and academic reviews

Avoid secrecy in design

Get rid of legacy security

Shared rationale, sustainable design

Improve auditability

RISC-V security: give trust

- Ability to do formal verifications, detecting inconsistencies with the standard, detecting additions
- Foster the verification industry
- Shared and sustainable effort because of an open standard
- Results can be public
- RISC-V Foundation Security Standing Committee created in 2018
- Best security practices
- Collaboration with other groups

- TEE subgroup
- Crypto extensions subgroup
- Bit manip subgroup
- Academic and industry together

RISC-V security: give trust

• With the open community, the risks are shared, the countermeasures are shared

- Open ISA allows a fully open-source hardware implementation
 - easy access to deep details, easy modification, testing, prototyping
- Open ISA could help for micro-architecture better security
- An action for the future, not a reaction to the past
- In line with industry concerns for more security assurance
 - IPSA

Adding, extending is in the DNA of RISC-V

- Instructions extensions: add crypto instructions at micro architecture level
 - AES, SHA, TRNG
 - Bit manip
- Vector extensions: ease the use of cryptography for an easier use of the security
- Software architecture: secure monitor, secure boot, TEE APIs, attestation, ...
- Large scope, scalability, better consistency, longer sustainability
 - 32-bit, 64-bit, 128-bit, ... : from small, single-core to large, multi-core systems
- Lot of initiatives: DARPA, Thalés-Microchip contest, ...

- Driven by the principles of the smallest attack surface in M mode and the least needed privilege
 - Delegate as much as possible
 - Even in M-mode, you couldn't do what you want
 - Even in S-mode, you couldn't run U code
- Native definitions of multiple privileges levels: M, S, U

Privileged instruction set

•RISC-V Privileged Specification defines 4 levels of privilege, called Modes

•Machine mode is the highest privileged mode and the only required mode

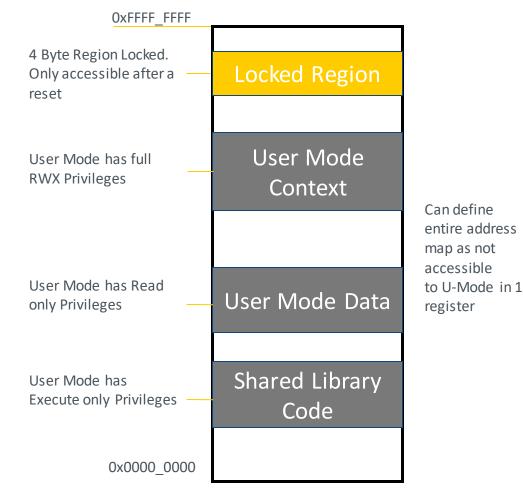
•Flexibility allows for a range of targeted implementations from simple MCUs to highperformance Application Processors

•Machine, Hypervisor, Supervisor modes each have Control and Status Registers (CSRs)

RISC-V Modes		
Level	Name	Abbr.
0	User/Application	U
1	Supervisor	S
2	(Hypervisor)	Н
3	Machine	М

Supported Combinations of Modes		
Supported Levels	Modes	
1	Μ	
2	M, U	
3	M, S, U	
4	M, H, S, U	

- Configuration depending on system complexity
 - M, or M/U or M/S/U
 - M/S/U initially for large systems, running big OSes (linux)
 - M/S/U tends to become the standard even for "small" devices (w/o satp register)


- Traps (interrupts, exceptions) management delegation
 - By default, any interrupt goes into M-mode, but it can automatically be delegated to S-mode (for S and U interrupts) or U-mode (for U interrupts)
 - Designed for performances, but also good for security

- PMP: physical memory protection
- Defines memories areas access rights and conditions

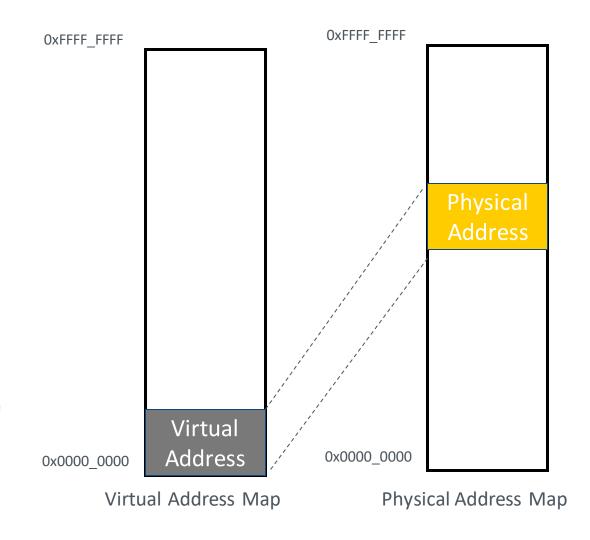
- Can be used to enforce access restrictions on less privileged modes
 - Prevent Supervisor and User
 Mode software from accessing unwanted memory
- Up to 16 regions with a minimum region size of 4 bytes
- Ability to Lock a region
 - A locked region enforces permissions on all accesses, including M-Mode
 - Only way to unlock a region is a Reset

Example PMP Memory Map

- sPMP: similar to PMP but in S-mode
 - Proposed by the TEE WG

What are Control and Status Registers (CSRs)

- CSRs are Registers which contain the working state of a RISC-V machine
- CSRs are specific to a Mode
 - Machine Mode has ~17 CSRs (not including performance monitor CSRs)
 - Supervisor Mode has a similar number, though most are subsets of their equivalent Machine Mode CSRs
 - Machine Mode can also access Supervisor CSRs
- CSRs are defined in the RISC-V privileged specification

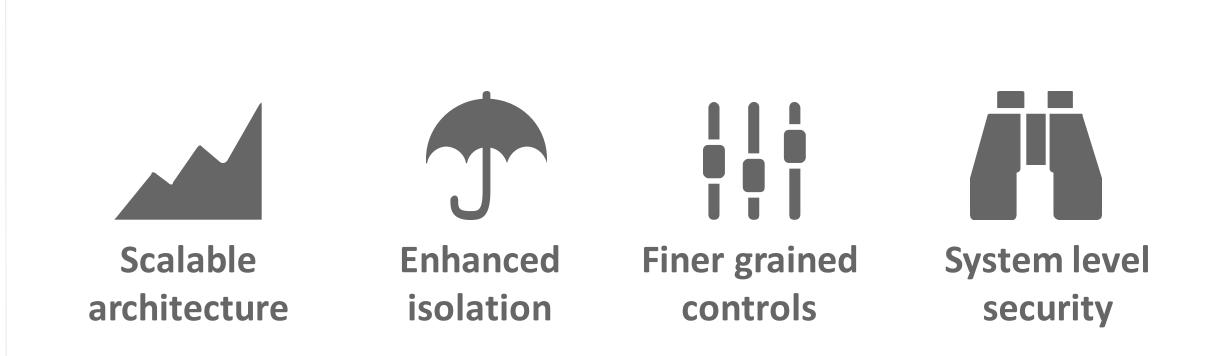

Supervisor CSRs

- Most of the Machine mode CSRs have Supervisor mode equivalents
 - Supervisor mode CSRs can be used to control the state of Supervisor and User Modes.
 - Most equivalent Supervisor CSRs have the same mapping as Machine mode without Machine mode control bits
 - *sstatus, stvec, sip, sie, sepc, scause, satp*, and more

• satp - Supervisor Address Translation and Protection Register

Used to control Supervisor mode address translation and protection

- RISC-V has support for Virtual Memory allowing for sophisticated memory management and OS support (Linux)
- Requires an S-Mode implementation
- Sv32
 - 32bit Virtual Address
 - 4KiB, 4MiB page tables (2 Levels)
- Sv39 (requires an RV64 implementation)
 - 39bit Virtual Address
 - 4KiB, 2MiB, 1GiB page tables (3 Levels)
- Sv48 (requires an RV64 implementation)
 - 48bit Virtual Address
 - 4KiB, 2MiB, 1 GiB, 512GB page tables (4 Levels)
- Page Tables also contain access permission attributes


RISC-V security: debug with security

RISC-V debug specification standardizes the debug module

• And considers an authentication module, open and flexible

RISC-V SoC needs more security

SiFive Security

CONFIDENTIAL - COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

- Cryptographic blocks (application, memories, ...)
- Secure boot, secure update

- Secure key provisioning
- Secure debug

• System-level isolation

CONFIDENTIAL - COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

proposes a resources isolation solution at system level

- splits the system into distinct worlds, each world made of resources
- resources can be masters (cores, DMA channels, ...), slaves (portions of memories, peripherals)
- complementary to RISC-V security and virtualization

SiFive WorldGuard Security architecture benefits

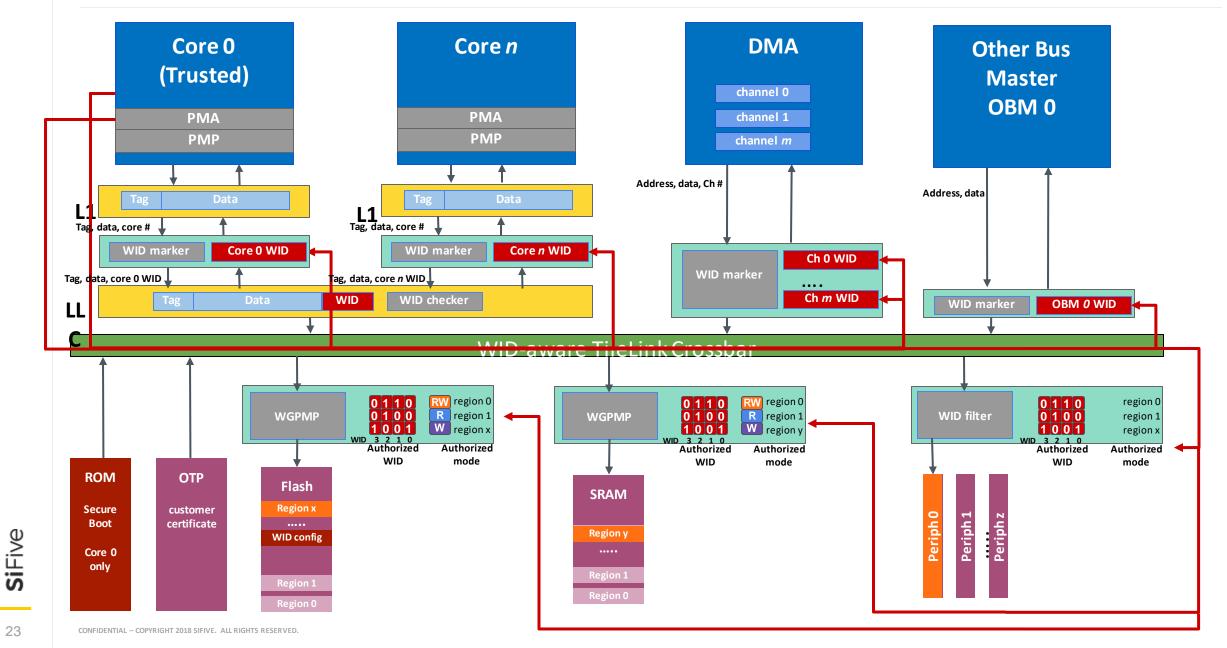
•Multi-level trust model for enhanced security and flexibility

•Multiple worlds are hardware-controlled and protect memories and peripherals from illegal access

•Supports multiple cores, multiple bus masters (ie. DMA controllers, caches, eFPGA...)

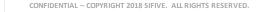
•Complementary to what PMP offers for software protection

Low system overhead


core agnostic
RISC-V ISA remains untouched
very low overhead on control logic for peripherals, memories and bus masters
very low impact on performances

• Fine grain control

- Up to *n* individual worlds, identified by a WID (World ID)
- Up to *m* memory regions per memory can be shared between different worlds.
- Each peripheral has its own access control list per world.



- limited TCB: the *trusted core* and its firmware
- do not trust M-mode in other cores

• WG PMPs and WG filters are gate keepers, whatever happens on master side.

• goes beyond the single core security (PMP)

SiFive

- secure, simple, scalable
- very limited impact on the firmware

- the system-level security solution RISC-V community needs
- demo at *embedded world 2020* in Nuremberg (feb 2020)
- specifications released in march 2020

SiFive

QUESTIONS ?

