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Why Hardware-Assisted Application Security?
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Hardware-Assisted Security Enables Implementation of
Trusted Execution Environments (TEEs)
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Principle of Remote Attestation

* Goal: Check if prover is now in a trustworthy state

Verifier Prover
verity Challenge
—
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Report state
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Database



History of Remote Attestation

PUFatt [DAC’'14] SEDA [CCS’15]
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current binary attestation schemes
do not address run-time (memory
corruption) attacks



CONTROL-FLOW RUN-TIME ATTACKS TEE BUG

ATTESTATION AGAINST INTEL SGX FINDING
—_
Embedded System LIIINIC)
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Problem Space of Run-time Attacks

Control-Flow Attack Non-Control-Data Attack
[Shacham, ACM CCS 2007] [Chen et al., USENIX Sec. 2005]
[Schuster et al., IEEE S&P 2015] [Carlini et al., USENIX Sec. 2015]
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Related Work

Not suitable for control-flow attestation

* Integrity-based schemes usually target a specific runtime attack

class
* These schemes only output whether an attack occurred but

don’t attest the control-flow path



C-FLAT
[Abera et al., CCS 2016]
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How to attest the executed control
flows without transmitting all
executed branches?




C-FLAT Measurement Function
Cumulative Hash Value: H.=H (H, ,, N)
* H, , - previous hash result

* N - instruction block (node) just executed




Loops are a challenge!
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C-FLAT: Loop Handling




C-FLAT: Loop Handling
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Prototype Architecture

* Implementation on Raspberry Pi 2

Application
Binary

Measurement
Engine and

Attestation
Trampolines

Secure World
(ARM TrustZone)

Normal World



Evaluation: Syringe Pump

Source: https://hackaday.io/project/1838-
open-syringe-pump

Original implementation targets Arduino
boards

We ported the code to Raspberry Pi
13,000 instructions with 332 CFG edges of
which 20 are loops

Main functions are set-quantity and
move-syringe




Applying C-FLAT to Syringe Pump

main()

while (1) {
if (serialReady()) {
cfa_init;
processSerial(); @9
cfa_quote; @)

}

processSerial()

if (input ’+7) {
action(PUSH,bolus);
updateScreen();

}
@else if (inpu =) A
action(PULL,bolus);
updateScreen();

488 R

action(direction,bolus)

steps = bolus * steps per _mL
v if (direction PUSH) {
/* set stepper direction */

O ) e1se { /* PULL */

/* set stepper direction */
}

for (steps) {
/* move stepper */

4

O;

bolus = dose of drug;
volume of cylinder for a
particular height

_—
-

Syringe pump code and control-flow graph.

Please note that this slide shows a simplified view of the



Final Hash Measurements

action(direction,bolus) Final Measurements for
/B steps = bolus * steps per_mL PUSH, PULL OperationS:
if (direction = PUSH) { b3 ¢5 ca c4 6f dc 6a do

/* set stepper direction */===7> ,. g5 19 09 af a3 59 70

else /* PULL */
/* set stepper direction %/ onnl, €9 92 f6 48 11 65 17 94
a7 @b 06 f0 ba e4 75 75

"= Loop Measurement:

97 78 fb fc 93 09 4e d7
ac 32 5d 65 eb 29 08 Oc
(#iterations)



Open Questions

* How to address performance overhead?

»Tackled based on hardware assistance in a follow-up
work, LO-FAT [DAC‘17]

* What can go wrong inside the TEE?
»Next part of this talk with focus on SGX




Overview on Intel SGX

APP Malware

App Code App Code
App Data App Data
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App-Enclave Communication

Enclave Code

Enclave Data

Enclave

Entry & Exit

Entry to Enclave
code is only allowed
at pre-defined
entry points

Py



Academic Research on Side-Channel Attacks Against SGX

Boffins show Intel's SGX can leak
crypto keys

Software Guard Extensions are supposed to hide
data. But the 'Prime+Probe attack' fixes that

Telling Your Secrets Without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution

Jo Van Bulck, imec-DistriNet, KU Leuven; Nico Weichbrodt and Ridiger Kapitza, IBR DS, TU
Braunschweig; Frank Piessens and Raoul Strackx, imec-DistriNet, KU Leuven

FORESHADOW: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution

Jo Van Bulck, imec-DistriNet, KU Leuven; Marina Minkin, Technion; Ofir Weisse,
Daniel Genkin, and Baris Kasikci, University of Michigan; Frank Piessens, imec-DistriNet,
KU Leuven; Mark Silberstein, Technion; Thomas F. Wenisch, University of Michigan;
Yuval Yarom, University of Adelaide and Data61; Raoul Strackx, imec-DistriNet, KU Leuven
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What about Return-Oriented
Programming Attacks?
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Return-Oriented Programming
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Return-Oriented Programming Attack

Program Code

Sequence 1

Corrupt Control Sequence 2
Structures

Program Stack

Return Address 3 Sequence 3

©xAABBCCDD

0X80102030

. LS| 0x80102030 |
Ox80102030
OxXAABBCCDD
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First Run-Time Attacks and Defenses
Targeting Intel SGX



Related Work

Dark ROP

SGX-Shield

VB [USENIX Sec. 2017]

* Analyzes the threat of memory
corruption vulnerabilities in the
context of SGX

* Presents ROP attack against
(unknown) encrypted enclave
binaries

e Based on probing attacks

* Requires kernel privileges and
ability to repeatedly crash the
enclave

[INDSS 2017]

* Enforces fine-grained memory
randomization of SGX enclave

e Software-based data execution
prevention (DEP)

* Proposes control-flow integrity for
return instructions

28



Can we

OYPass Memory

randomnr

ization in SGX?
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[Biondo et al., USENIX Security 2018]
Our main observation is that the Intel SGX
SDK includes dangerous return-oriented
programming gadgets which are essential
for app-enclave communication



ECALL: Call into an enclave

APP
App Code

Untrusted Runtime System (uRTS)
App Data ECALL

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack
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OCALL: Enclave Call to the Host Application

App Code

App Data

Enclave Code

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
OCALL

Enclave Stack

OCALL Frame
Register State

Enclave




: Asynchronous Enclave Exit (Exception)

App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack

Exception information
structure
Register State
Enclave

AEX (asynchronous enclave exit)
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Restoring State is Critical

OCALL Frame

Dartial Register State

* When OCALL returns, the register
state is restored by the tRTS
function asm_oret()

* If an attacker manages to inject a
frake ocall frame, he controls the
subsequent state

Exception

information structure
Full Register State

* After handling the exception, the
register state is restored by the
tRTS function continue execution()

* If an attacker manages to inject a
fake exception structure, he
controls the subsequent state

34



Basic Attack Idea

APP
App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)

Counterfeit State 4 S

Information Enclave Stack

R
Counterfeit State

S— I Mal. Register State

R Encla\/e




Two Attack Primitives

ORET Primitive CONT Primitive

* Primitive to exploit OCALL * Primitive to exploit asynchronous
mechanism exception handling in SGX

« It is based on injecting fake OCALL * Based on injecting fake exception
frames structures

* Prerequisites: function pointer
overwrite and control of rdi
register

* Prerequisites: stack control

36



Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)

ORET Primitive CONT Primitive
Enclave Code
Counterfeit State L

Information
Enclave Stack

Counterfeit State
Fake OCALL Frames

Enclave Except. Structures




Attack Workflow for Stealing SGX-Protected Keys
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Trusted Runtime System (tRTS)
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Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
ORET Primitive CONT Primitive

Enclave Code
Counterfeit State f ! |
Information ‘
Enclave Stack

Counterfeit State
Fake OCALL Frames _~—

Enclave Except. Structures




Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
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However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space




Revisited Attack to Bypass SGX-Shield

Untrusted Runtime System (uRTS)

L T
Trusted Runtime System (tRTS)
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Enclave Code
Counterfeit State 34}§ r Memory Write 4J

Information
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Enclave Except. Structures




Possible Defenses

* Removing SDK from enclave memory?
* Not feasible as OCALL, ECALL, AEX require the tRTS

 Randomizing SDK code?
* Challenging, the tRTS is accessed through fixed entry
points
* Discovering vulnerabilities beforehand?

* Last part of this talk: research on fuzzing and symbolic
execution

43



Background: Bug Discovery Techniques

+ Symbolic Execution * Fuzzing
+ Emulate the program based on encoding * Probabilistically explore program paths
the program state as symbolic variables * Find new inputs with random mutation
+ Utilize solver to find feasible crashing
paths
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TrustZone OS Fuzzing

Feedback Fuzzer Inputs Initial Testcases

(Coverage, Crash Info)

Inputs
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Input
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Symbolic Execution of SGX Enclaves

Emulated

enclave.so Address Space

Enclave Code

Enclave Data

. Enclave Stack
Unconstrained

State




Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services - control-flow attestation

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE = return-
oriented programming

Hence, research on bug finding in TEE code is
crucial = fuzzing, symbolic execution



