
Memory Corruption Attacks in
the Context of Trusted Execution

Environments

Lucas Davi

Secure Software Systems

University of Duisburg-Essen, Germany

Seminar on the Security of Software and Hardware Interfaces, Rennes, INRIA, France
8 November, 2019

Why Hardware-Assisted Application Security?

2

Hardware

App

Operating System

CPU

Malware

Memory

Exploits
bugs in applications

Malware Infection
e.g., Zeus banking

trojan

DRAM Bugs
e.g., Rowhammer

CPU Bugs
e.g., Spectre

Kernel Exploits
e.g., Stagefright

Hardware-Assisted Security Enables Implementation of
Trusted Execution Environments (TEEs)

3

Hardware

App

Operating System

CPU Memory

App Trusted
App

Trusted Operating
System

Trusted
App

Normal World Secure World

Popular TEE
Implementations:
• ARM TrustZone
• Intel Software

Guard Extensions
(SGX)

Principle of Remote Attestation

Prover

Measure
software

state

Challenge

Verifier

Authentic
Report

•Goal: Check if prover is now in a trustworthy state

Measurement
Database

Verify
Report

Attestation Protocol

History of Remote Attestation

5

TPM
Attestation

2001

Dynamic Root
of Trust

2005

Software-based
Attestation

2004

Property-based
attestation

2004

Minimal Trust
Anchors

2010

PUF-based
Attestation

2011

Swarm
Attestation

2015

SEDA [CCS’15]
SANA [CCS’16]
DARPA [WiSEC’16]

Property-based Attest. [NSPW’04]
Behavior-based Trust [NSPW’04]
Semantic Remote Attest. [VM’04]

AMD SVM
Intel TXT
Intel SGX
Flicker [Eurosys’08]…

POSE [ESORICS’10]
SMART [NDSS’12,DATE’14]
TrustLite [Eurosys’14]

Pioneer [SOSP’05]…
SWATT [SP’04]

PUFatt [DAC’14]
Lightweight PUF
Attest. [WiSEC’11]

Key Limitation:
current binary attestation schemes
do not address run-time (memory

corruption) attacks

7

Embedded System
with

ARM TrustZone

Intel SGX

CONTROL-FLOW
ATTESTATION

RUN-TIME ATTACKS
AGAINST INTEL SGX

TEE BUG
FINDING

Problem Space of Run-time Attacks

A

B

EDC

F

X

Adversary

A

B

EDC

F
DEP

Memory write

Program flow

inject malicious
code

corrupt code
pointer

Control-Flow Attack
[Shacham, ACM CCS 2007]

[Schuster et al., IEEE S&P 2015]

Non-Control-Data Attack
[Chen et al., USENIX Sec. 2005]

[Carlini et al., USENIX Sec. 2015]

ENTRY
asm_ins, …
EXIT

Basic Block

corrupt data
pointer/variable

switch(opmode)
case recovery: C
case op1: D
case op2: E,F

Related Work

Control-flow
integrity

(CFI)
[Abadi et al.,

CCS’05]

Data-flow
integrity

(DFI)
[Castro et al.,

OSDI’06]

Code-pointer
integrity

(CPI)
[Kuznetsov et
al., OSDI’14]

Remote
Dynamic

Attestation
[Kil et al.,
DSN’09]

Not suitable for control-flow attestation

 Integrity-based schemes usually target a specific runtime attack
class

 These schemes only output whether an attack occurred but
don’t attest the control-flow path

ProverVerifier

Control-Flow
Graph (CFG)

Analysis

App A

Path
Measurement

P1 P2

LP1 App A

P1

P1 , #LP1

P2

Run-Time Path
Measurement

P*x P*2

Control-Flow
Validation

P*x

P*2

Path Measurement
is performed inside
a TEE (TrustZone)

C-FLAT
[Abera et al., CCS 2016]

How to attest the executed control
flows without transmitting all

executed branches?

C-FLAT Measurement Function
Cumulative Hash Value: Hi = H (Hi-1, N)

• Hi-1 - previous hash result

• N - instruction block (node) just executed

A

B

EDC

F

H1=H(0,A)

H2=H(H1,B)

H5=H(H2,E)

H6=H(H5,F)

H3=H(H2,C) H4=H(H2,D)

Loops are a challenge!

Different loop paths
and loop iterations lead to many valid
hash values

C-FLAT: Loop Handling

B

C

ED

F

A

G
while (cond.) {…}

if (cond.) {…}

C-FLAT: Loop Handling

B

C

ED

F

H1=H(0,A)

H2a=H(0,B)

H6a=H(H4,F)
H7=H(H2b,G)

A

G
H2b=H(H1,B)

H3=H(H2a,C)

H4=H(H3,D) H5=H(H3,E)

H3=H(H2a,C)

H6b=H(H5,F)

H1

H6a,#H6a

H6b,#H6b

Loop Entry
Hash

Loop
Hash,Iteration

while (cond.) {…}

if (cond.) {…}

Prototype Architecture

• Implementation on Raspberry Pi 2

Measurement
Engine and
Attestation

Hardware

Application
Binary

Trampolines

Evaluation: Syringe Pump
Source: https://hackaday.io/project/1838-
open-syringe-pump

• Original implementation targets Arduino
boards

• We ported the code to Raspberry Pi
• 13,000 instructions with 332 CFG edges of

which 20 are loops
• Main functions are set-quantity and

move-syringe

Applying C-FLAT to Syringe Pump

while (1) {
if (serialReady()) {
cfa_init;
processSerial();
cfa_quote;

}
}

1

if (input == ’+’) {
action(PUSH,bolus);
updateScreen();

}
else if (input == ’-’) {
action(PULL,bolus);
updateScreen();

}

steps = bolus * steps_per_mL
if (direction == PUSH) {
/* set stepper direction */

} else { /* PULL */
/* set stepper direction */

}
for (steps) {
/* move stepper */

}

2
3

9

10

11

12
13

4

6

7

8
processSerial()

action(direction,bolus)

14

5

main()

bolus = dose of drug;
volume of cylinder for a

particular height
x

Please note that this slide shows a simplified view of the
Syringe pump code and control-flow graph.

Final Hash Measurements

steps = bolus * steps_per_mL
if (direction = PUSH) {
/* set stepper direction */

} else /* PULL */
/* set stepper direction */

}
for (steps) {
/* move stepper */

}

4

6

7

8

action(direction,bolus)

5

…

…

b3 c5 ca c4 6f dc 6a d0
4a 80 10 09 af a3 59 70

e0 9a f6 48 11 65 17 94
a7 0b 06 f0 ba e4 75 75

97 78 fb fc 93 09 4e d7
ac 32 5d 65 eb 29 08 0c
(#iterations)

Final Measurements for
PUSH, PULL operations:

Loop Measurement:

Open Questions

 How to address performance overhead?

Tackled based on hardware assistance in a follow-up
work, LO-FAT [DAC‘17]

 What can go wrong inside the TEE?

Next part of this talk with focus on SGX

Overview on Intel SGX

21

APP

Hardware

APP

Enclave

Operating System

CPU

SGX

Enclave

App Code

App Data

Enclave

App Code

App Data

Malware

App Code

App Data

BUG

App-Enclave Communication

22

APP

Enclave

App Code

App Data

Enclave Code

Enclave Data
SGX SDK

Entry & Exit

Entry to Enclave
code is only allowed
at pre-defined
entry points

Academic Research on Side-Channel Attacks Against SGX

23

What about Return-Oriented
Programming Attacks?

24

Return-Oriented Programming

25

n mmo r ien ted Pro g ra ingrutRe

Return-Oriented Programming Attack

26

Program Stack

Return Address 1

Return Address 2

0X80102030

0xAABBCCDD

Return Address 3

Program Code

EAX:

EBX: 0xAABBCCDD

0x80102030

Sequence 1

x86_ins
ret

Sequence 2

pop eax
pop ebx
ret

Sequence 3

x86_ins
ret

ESP

Corrupt Control

Structures

...

First Run-Time Attacks and Defenses
Targeting Intel SGX

27

Related Work

• Analyzes the threat of memory
corruption vulnerabilities in the
context of SGX

• Presents ROP attack against
(unknown) encrypted enclave
binaries

• Based on probing attacks
• Requires kernel privileges and

ability to repeatedly crash the
enclave

• Enforces fine-grained memory
randomization of SGX enclave

• Software-based data execution
prevention (DEP)

• Proposes control-flow integrity for
return instructions

28

Dark ROP
[USENIX Sec. 2017]

SGX-Shield
[NDSS 2017]

Can we bypass memory
randomization in SGX?

29

[Biondo et al., USENIX Security 2018]
Our main observation is that the Intel SGX
SDK includes dangerous return-oriented

programming gadgets which are essential
for app-enclave communication

30

ECALL: Call into an enclave

31

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

ECALL

OCALL: Enclave Call to the Host Application

32

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

OCALL Frame
Register State

OCALL

AEX: Asynchronous Enclave Exit (Exception)

33

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

Exception information
structure

Register State

AEX (asynchronous enclave exit)

O
p

eratin
g System

Restoring State is Critical

• After handling the exception, the
register state is restored by the
tRTS function continue_execution()

• If an attacker manages to inject a
fake exception structure, he
controls the subsequent state

34

OCALL Frame
Partial Register State

Exception
information structure

Full Register State

• When OCALL returns, the register
state is restored by the tRTS
function asm_oret()

• If an attacker manages to inject a
frake ocall frame, he controls the
subsequent state

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

rip

all_other_regs

Basic Attack Idea

35

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

Function 1

Function 2

Function 3

Counterfeit State
Mal. Register State

Counterfeit State
Information

Two Attack Primitives

• Primitive to exploit asynchronous
exception handling in SGX

• Based on injecting fake exception
structures

• Prerequisites: function pointer
overwrite and control of rdi
register

36

ORET Primitive CONT Primitive

• Primitive to exploit OCALL
mechanism

• It is based on injecting fake OCALL
frames

• Prerequisites: stack control

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

all_other_regs

rip

Attack Workflow for Stealing SGX-Protected Keys

37

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

Attack Workflow for Stealing SGX-Protected Keys

38

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

Attack Workflow for Stealing SGX-Protected Keys

39

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

Attack Workflow for Stealing SGX-Protected Keys

40

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space

41

Revisited Attack to Bypass SGX-Shield

42

APP

Enclave

App Code

App Data

Enclave Code

Enclave Stack

Trusted Runtime System (tRTS)

Untrusted Runtime System (uRTS)

Function 0

get_key

send_file

Function 3

Counterfeit State
Fake OCALL Frames
Except. Structures

Counterfeit State
Information

ORET Primitive CONT Primitive

rsp rdirip all_other_regs

Memory Write

Shellcode
Stealing Keys

Possible Defenses

•Removing SDK from enclave memory?
• Not feasible as OCALL, ECALL, AEX require the tRTS

• Randomizing SDK code?
• Challenging, the tRTS is accessed through fixed entry

points

•Discovering vulnerabilities beforehand?
• Last part of this talk: research on fuzzing and symbolic

execution

43

Background: Bug Discovery Techniques
 Symbolic Execution

 Emulate the program based on encoding
the program state as symbolic variables

 Utilize solver to find feasible crashing
paths

 Fuzzing
 Probabilistically explore program paths
 Find new inputs with random mutation

89 50 4e 47
0d 0a 1a 0a
00 00 00 0d
49 48 44 52
00 00 02 9a
00 00 00 cd
08 00 00 00
00 3d 73 8f

Run Program

Mutation

Crash
?

ff

Report Crash

42

No

Yes

Feedback
(coverage)

Symbolically
Execute Program

SMT
Solver

89 50 4e 47
0d ff 1a 0a
00 00 00 0d
49 48 42 52

Program
Path + State

Crash
?

Generate
Crashing Input

No

Yes

Symbolic
Input

Fuzzer Initial Testcases

Emulated Hardware Emulated
Secure Monitor

Normal World TrustZone OS

Trusted Kernel

“Trusted” Agent

Emulator
Checkpoint
& Restore

Agent

Linux Kernel

Syscall

SMC

Feedback
(Coverage, Crash Info)

InputInput

Inputs

Inputs

TrustZone OS Fuzzing

Record Coverage
and Crash
Information

Symbolic Execution of SGX Enclaves

Symbolic
Execution

Engine

Emulated
Address Spaceenclave.so

Enclave Code

Enclave Data

Enclave Stack

Loader

Explorer

angr

Unconstrained
State

State
Checker

Crash Report

Our Tool

Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services → control-flow attestation

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE → return-
oriented programming

Hence, research on bug finding in TEE code is
crucial → fuzzing, symbolic execution

