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Why Hardware-Assisted Application Security?
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Hardware-Assisted Security Enables Implementation of
Trusted Execution Environments (TEEs)
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Principle of Remote Attestation
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History of Remote Attestation
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Key Limitation:
current binary attestation schemes 
do not address run-time (memory 

corruption) attacks
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Problem Space of Run-time Attacks
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Control-Flow Attack
[Shacham, ACM CCS 2007]

[Schuster et al., IEEE S&P 2015]

Non-Control-Data Attack
[Chen et al., USENIX Sec. 2005]

[Carlini et al., USENIX Sec. 2015]

ENTRY
asm_ins, …
EXIT

Basic Block

corrupt data
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switch(opmode)
case recovery: C
case op1: D
case op2: E,F



Related Work

Control-flow 
integrity 

(CFI) 
[Abadi et al., 

CCS’05] 

Data-flow 
integrity 

(DFI) 
[Castro et al., 

OSDI’06]

Code-pointer 
integrity 

(CPI) 
[Kuznetsov et 
al., OSDI’14] 

Remote 
Dynamic 

Attestation 
[Kil et al., 
DSN’09]

Not suitable for control-flow attestation

 Integrity-based schemes usually target a specific runtime attack 
class

 These schemes only output whether an attack occurred but 
don’t attest the control-flow path
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How to attest the executed control 
flows without transmitting all 

executed branches?



C-FLAT Measurement Function
Cumulative Hash Value:  Hi = H ( Hi-1, N )

• Hi-1 - previous hash result 

• N - instruction block (node) just executed
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H5=H(H2,E)

H6=H(H5,F)

H3=H(H2,C) H4=H(H2,D)



Loops are a challenge!

Different loop paths 
and loop iterations lead to many valid 
hash values



C-FLAT: Loop Handling 
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C-FLAT: Loop Handling 
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Prototype Architecture

• Implementation on Raspberry Pi 2

Measurement 
Engine and 
Attestation

Hardware

Application
Binary

Trampolines



Evaluation: Syringe Pump
Source: https://hackaday.io/project/1838-
open-syringe-pump

• Original implementation targets Arduino 
boards

• We ported the code to Raspberry Pi
• 13,000 instructions with 332 CFG edges of 

which 20 are loops
• Main functions are set-quantity and 

move-syringe



Applying C-FLAT to Syringe Pump

while (1) {
if (serialReady()) {
cfa_init;
processSerial();
cfa_quote;

}
}

1

if (input == ’+’) {
action(PUSH,bolus);
updateScreen();

} 
else if (input == ’-’) {
action(PULL,bolus);
updateScreen();

}

steps = bolus * steps_per_mL
if (direction == PUSH) {
/* set stepper direction */

} else { /* PULL */
/* set stepper direction */

}
for (steps) {
/* move stepper */

}

2
3

9

10

11

12
13

4

6

7

8
processSerial()

action(direction,bolus)

14

5

main()

bolus = dose of drug;
volume of cylinder for a 

particular height
x

Please note that this slide shows a simplified view of the 
Syringe pump code and control-flow graph.



Final Hash Measurements

steps = bolus * steps_per_mL
if (direction = PUSH) {
/* set stepper direction */

} else /* PULL */
/* set stepper direction */

}
for (steps) {
/* move stepper */

}

4

6

7

8

action(direction,bolus)

5

…

…

b3 c5 ca c4 6f dc 6a d0 
4a 80 10 09 af a3 59 70

e0 9a f6 48 11 65 17 94 
a7 0b 06 f0 ba e4 75 75

97 78 fb fc 93 09 4e d7 
ac 32 5d 65 eb 29 08 0c
(#iterations)

Final Measurements for 
PUSH, PULL operations:

Loop Measurement:



Open Questions

 How to address performance overhead? 

Tackled based on hardware assistance in a follow-up
work, LO-FAT [DAC‘17]

 What can go wrong inside the TEE? 

Next part of this talk with focus on SGX



Overview on Intel SGX
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App-Enclave Communication
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Academic Research on Side-Channel Attacks Against SGX
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What about Return-Oriented 
Programming Attacks?
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Return-Oriented Programming
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Return-Oriented Programming Attack
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Program Stack

Return Address 1

Return Address 2

0X80102030

0xAABBCCDD

Return Address 3

Program Code

EAX:

EBX: 0xAABBCCDD

0x80102030

Sequence 1

x86_ins
ret

Sequence 2

pop eax
pop ebx
ret

Sequence 3

x86_ins
ret

ESP

Corrupt Control

Structures

...



First Run-Time Attacks and Defenses 
Targeting Intel SGX
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Related Work

• Analyzes the threat of memory 
corruption vulnerabilities in the 
context of SGX

• Presents ROP attack against 
(unknown) encrypted enclave 
binaries

• Based on probing attacks 
• Requires kernel privileges and 

ability to repeatedly crash the 
enclave

• Enforces fine-grained memory 
randomization of SGX enclave 

• Software-based data execution 
prevention (DEP)

• Proposes control-flow integrity for 
return instructions

28

Dark ROP
[USENIX Sec. 2017]

SGX-Shield
[NDSS 2017]



Can we bypass memory 
randomization in SGX?
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[Biondo et al., USENIX Security 2018]
Our main observation is that the Intel SGX 
SDK includes dangerous return-oriented 

programming gadgets which are essential 
for app-enclave communication

30



ECALL: Call into an enclave
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OCALL: Enclave Call to the Host Application
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AEX: Asynchronous Enclave Exit (Exception)
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Restoring State is Critical

• After handling the exception, the 
register state is restored by the 
tRTS function continue_execution()

• If an attacker manages to inject a 
fake exception structure, he 
controls the subsequent state
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OCALL Frame
Partial Register State

Exception
information structure

Full Register State

• When OCALL returns, the register
state is restored by the tRTS
function asm_oret()

• If an attacker manages to inject a 
frake ocall frame, he controls the
subsequent state

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

rip

all_other_regs



Basic Attack Idea
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Two Attack Primitives

• Primitive to exploit asynchronous 
exception handling in SGX

• Based on injecting fake exception 
structures

• Prerequisites: function pointer 
overwrite and control of rdi
register
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ORET Primitive CONT Primitive

• Primitive to exploit OCALL 
mechanism

• It is based on injecting fake OCALL 
frames

• Prerequisites: stack control

rbx rsi rdi rpb r12

r13r14

r15

rsp rip

rdi

all_other_regs

rip



Attack Workflow for Stealing SGX-Protected Keys
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Attack Workflow for Stealing SGX-Protected Keys
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Attack Workflow for Stealing SGX-Protected Keys
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Attack Workflow for Stealing SGX-Protected Keys
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However, this attack doesn‘t work if SGX-Shield 
randomizes the SGX address space 
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Revisited Attack to Bypass SGX-Shield
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Possible Defenses

•Removing SDK from enclave memory?
• Not feasible as OCALL, ECALL, AEX require the tRTS

• Randomizing SDK code?
• Challenging, the tRTS is accessed through fixed entry 

points

•Discovering vulnerabilities beforehand?
• Last part of this talk: research on fuzzing and symbolic 

execution
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Background: Bug Discovery Techniques
 Symbolic Execution

 Emulate the program based on encoding 
the program state as symbolic variables

 Utilize solver to find feasible crashing 
paths

 Fuzzing
 Probabilistically explore program paths
 Find new inputs with random mutation

89 50 4e 47 
0d 0a 1a 0a
00 00 00 0d 
49 48 44 52
00 00 02 9a 
00 00 00 cd
08 00 00 00 
00 3d 73 8f

Run Program

Mutation

Crash
?

ff

Report Crash
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No

Yes

Feedback
(coverage)

Symbolically
Execute Program

SMT
Solver

89 50 4e 47 
0d ff 1a 0a
00 00 00 0d 
49 48 42 52

Program
Path + State

Crash
?

Generate
Crashing Input

No

Yes

Symbolic
Input



Fuzzer Initial Testcases
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Symbolic Execution of SGX Enclaves

Symbolic 
Execution

Engine

Emulated 
Address Spaceenclave.so

Enclave Code
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Enclave Stack

Loader
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Unconstrained 
State

State 
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Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services → control-flow attestation

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE → return-
oriented programming

Hence, research on bug finding in TEE code is
crucial → fuzzing, symbolic execution


