Seminar on the Security of Software and Hardware Interfaces, Rennes, INRIA, France
8 November, 2019

Memory Corruption Attacks in
the Context of Trusted Execution
Environments

Lucas Davi
Secure Software Systems
University of Duisburg-Essen, Germany

Why Hardware-Assisted Application Security?

Exploits
bugs in applications

Malware)
CPU Bugs Malware Infection

e.g., Spectre e.g., Zeus banking
B 4 J trojan

Operating System

Kernel Exploits

e.g., Stagefright DRAM Bugs

.“i_:)*. _
e.g., Rowhammer

Hardware

Hardware-Assisted Security Enables Implementation of
Trusted Execution Environments (TEEs)

Normal World Secure World

Trusted Trusted

Popular TEE

Implementations:

* ARM TrustZone

* Intel Software
Guard Extensions
(SGX)

Operating System

Hardware

Principle of Remote Attestation

* Goal: Check if prover is now in a trustworthy state

Verifier Prover
verity Challenge
—
—— Measure
Authentic software

Report state

Measurement
Database

History of Remote Attestation

PUFatt [DAC’'14] SEDA [CCS’15]
Pioneer [SOSP’05]... Lightweight PUF SANA [CCS’16]

SWATT [SP’04] Attest. [WIiSEC'11] DARPA [WISEC'16]

TPM Software-based PUF-based Swarm

Attestation Attestation Attestation Attestation
2001 2004 2011 2015

Property-based Dynamic Root Minimal Trust
attestation of Trust Anchors
2004 2005 2010
Property-based Attest. [NSPW’04] AMD SVM POSE [ESORICS’10]
Behavior-based Trust [NSPW’04] Intel TXT SMART [NDSS’12,DATE"14]
Semantic Remote Attest. [VM’04] Intel SGX TrustLite [Eurosys’14]

Flicker [Eurosys’08]...

current binary attestation schemes
do not address run-time (memory
corruption) attacks

CONTROL-FLOW RUN-TIME ATTACKS TEE BUG

ATTESTATION AGAINST INTEL SGX FINDING
—_
Embedded System LIIINIC)
with

ARM TrustZone

Problem Space of Run-time Attacks

Control-Flow Attack Non-Control-Data Attack
[Shacham, ACM CCS 2007] [Chen et al., USENIX Sec. 2005]
[Schuster et al., IEEE S&P 2015] [Carlini et al., USENIX Sec. 2015]
switch()
case recovery: C

caseopl: D
caseop2: E,F

___—

corrupt code
pointer

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

a
e,
Y
Y
]
Y
Y
o]
Y
]
Y
Y
Y
L
vy
Y
«

corrupt data
pointer/variable

inject malicious
code

Memory write
Program flow

Adversary

Related Work

Not suitable for control-flow attestation

* Integrity-based schemes usually target a specific runtime attack

class
* These schemes only output whether an attack occurred but

don’t attest the control-flow path

C-FLAT
[Abera et al., CCS 2016]

/

LP,

Verifier Prover

Path Measurement

is performed inside
a TEE (TrustZone)

P*, P*,

How to attest the executed control
flows without transmitting all
executed branches?

C-FLAT Measurement Function
Cumulative Hash Value: H.=H (H, ,, N)
* H, , - previous hash result

* N - instruction block (node) just executed

Loops are a challenge!

Differer

and

hasr

OO0
Vd

t loop paths
0 iterations lead to many valid

UesS

C-FLAT: Loop Handling

C-FLAT: Loop Handling

) H,=H(0,A)

while (cond.)

H 'fE[}{,EB
Zb‘l’@

H,_=H(0,B)
if (cond.) {..}
“H;=H(H,,,C)

" He=H(H,,E)

Loop Entry Loop
Hash Hash,lteration

f”
~ et
~~-—-|—--"-"——

Prototype Architecture

* Implementation on Raspberry Pi 2

Application
Binary

Measurement
Engine and

Attestation
Trampolines

Secure World
(ARM TrustZone)

Normal World

Evaluation: Syringe Pump

Source: https://hackaday.io/project/1838-
open-syringe-pump

Original implementation targets Arduino
boards

We ported the code to Raspberry Pi
13,000 instructions with 332 CFG edges of
which 20 are loops

Main functions are set-quantity and
move-syringe

Applying C-FLAT to Syringe Pump

main()

while (1) {
if (serialReady()) {
cfa_init;
processSerial(); @9
cfa_quote; @)

}

processSerial()

if (input ’+7) {
action(PUSH,bolus);
updateScreen();

}
@else if (inpu =) A
action(PULL,bolus);
updateScreen();

488 R

action(direction,bolus)

steps = bolus * steps per _mL
v if (direction PUSH) {
/* set stepper direction */

O) e1se { /* PULL */

/* set stepper direction */
}

for (steps) {
/* move stepper */

4

O;

bolus = dose of drug;
volume of cylinder for a
particular height

_—
-

Syringe pump code and control-flow graph.

Please note that this slide shows a simplified view of the

Final Hash Measurements

action(direction,bolus) Final Measurements for
/B steps = bolus * steps per_mL PUSH, PULL OperationS:
if (direction = PUSH) { b3 ¢5 ca c4 6f dc 6a do

/* set stepper direction */===7> ,. g5 19 09 af a3 59 70

else /* PULL */
/* set stepper direction %/ onnl, €9 92 f6 48 11 65 17 94
a7 @b 06 f0 ba e4 75 75

"= Loop Measurement:

97 78 fb fc 93 09 4e d7
ac 32 5d 65 eb 29 08 Oc
(#iterations)

Open Questions

* How to address performance overhead?

»Tackled based on hardware assistance in a follow-up
work, LO-FAT [DAC‘17]

* What can go wrong inside the TEE?
»Next part of this talk with focus on SGX

Overview on Intel SGX

APP Malware

App Code App Code
App Data App Data

Enclave

- ey

Operating System

Hardware

APP
App Code

App Data

Enclave

pA

App-Enclave Communication

Enclave Code

Enclave Data

Enclave

Entry & Exit

Entry to Enclave
code is only allowed
at pre-defined
entry points

Py

Academic Research on Side-Channel Attacks Against SGX

Boffins show Intel's SGX can leak
crypto keys

Software Guard Extensions are supposed to hide
data. But the 'Prime+Probe attack' fixes that

Telling Your Secrets Without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution

Jo Van Bulck, imec-DistriNet, KU Leuven; Nico Weichbrodt and Ridiger Kapitza, IBR DS, TU
Braunschweig; Frank Piessens and Raoul Strackx, imec-DistriNet, KU Leuven

FORESHADOW: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution

Jo Van Bulck, imec-DistriNet, KU Leuven; Marina Minkin, Technion; Ofir Weisse,
Daniel Genkin, and Baris Kasikci, University of Michigan; Frank Piessens, imec-DistriNet,
KU Leuven; Mark Silberstein, Technion; Thomas F. Wenisch, University of Michigan;
Yuval Yarom, University of Adelaide and Data61; Raoul Strackx, imec-DistriNet, KU Leuven

(JIO‘CI y O d - Ald q14 g, (l & N a.
2 né_‘ Cht‘n)Ul(_hllﬂ] (hel] iUd“ 1a,
\ g
' N ao. Yin 1ar thdll 2:}11 lang l.IIl lEIl]l I I
Pe 0. h
€par tn]f.nt of (lm)ltl ;((Nce ini EHHH]((rin
g

What about Return-Oriented
Programming Attacks?

n?
L7
|

g

Return-Oriented Programming

the N el lﬂl

anuda Iamm 6, OO

Daily Blog Tlps awarded thu

Laffjweek Darren Hofrse, the Daily Blog Tips is Ren
from the famous atct 1g] a vast audierjce foll
Problogger blag, of | blogzers| Jwho |are imp
anndufced the winners of look 1g to ove their

s latest Group Wiitige]| blogg. hdn|ashed about The
Project called 'Re \"16‘%':‘thc SUCGess s> \Ylog that

and Predictions"/ Among tlat. rela
. tha

Return-Oriented Programming Attack

Program Code

Sequence 1

Corrupt Control Sequence 2
Structures

Program Stack

Return Address 3 Sequence 3

©xAABBCCDD

0X80102030

. LS| 0x80102030 |
Ox80102030
OxXAABBCCDD

26

First Run-Time Attacks and Defenses
Targeting Intel SGX

Related Work

Dark ROP

SGX-Shield

VB [USENIX Sec. 2017]

* Analyzes the threat of memory
corruption vulnerabilities in the
context of SGX

* Presents ROP attack against
(unknown) encrypted enclave
binaries

e Based on probing attacks

* Requires kernel privileges and
ability to repeatedly crash the
enclave

[INDSS 2017]

* Enforces fine-grained memory
randomization of SGX enclave

e Software-based data execution
prevention (DEP)

* Proposes control-flow integrity for
return instructions

28

Can we

OYPass Memory

randomnr

ization in SGX?

29

[Biondo et al., USENIX Security 2018]
Our main observation is that the Intel SGX
SDK includes dangerous return-oriented
programming gadgets which are essential
for app-enclave communication

ECALL: Call into an enclave

APP
App Code

Untrusted Runtime System (uRTS)
App Data ECALL

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack

Enclave

OCALL: Enclave Call to the Host Application

App Code

App Data

Enclave Code

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
OCALL

Enclave Stack

OCALL Frame
Register State

Enclave

: Asynchronous Enclave Exit (Exception)

App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)

Enclave Stack

Exception information
structure
Register State
Enclave

AEX (asynchronous enclave exit)

@
g
M
S
Q)
=t
>
da
v
<
%)
—t
)
3

Restoring State is Critical

OCALL Frame

Dartial Register State

* When OCALL returns, the register
state is restored by the tRTS
function asm_oret()

* If an attacker manages to inject a
frake ocall frame, he controls the
subsequent state

Exception

information structure
Full Register State

* After handling the exception, the
register state is restored by the
tRTS function continue execution()

* If an attacker manages to inject a
fake exception structure, he
controls the subsequent state

34

Basic Attack Idea

APP
App Code

Untrusted Runtime System (uRTS)
App Data

Enclave Code Trusted Runtime System (tRTS)

Counterfeit State 4 S

Information Enclave Stack

R
Counterfeit State

S— I Mal. Register State

R Encla\/e

Two Attack Primitives

ORET Primitive CONT Primitive

* Primitive to exploit OCALL * Primitive to exploit asynchronous
mechanism exception handling in SGX

« It is based on injecting fake OCALL * Based on injecting fake exception
frames structures

* Prerequisites: function pointer
overwrite and control of rdi
register

* Prerequisites: stack control

36

Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)

ORET Primitive CONT Primitive
Enclave Code
Counterfeit State L

Information
Enclave Stack

Counterfeit State
Fake OCALL Frames

Enclave Except. Structures

Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)

ORET Primitive CONT Primitive
Enclave Code
Counterfeit State L

Information
Enclave Stack

Counterfeit State
Fake OCALL Frames

Enclave Except. Structures

Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
ORET Primitive CONT Primitive

Enclave Code
Counterfeit State f ! |
Information ‘
Enclave Stack

Counterfeit State
Fake OCALL Frames _~—

Enclave Except. Structures

Attack Workflow for Stealing SGX-Protected Keys

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)
ORET Primitive CONT Primitive

Enclave Code
Counterfeit State 4_', |
Information
Enclave Stack

L - = "

ounterfeit State
N ——— Fake OCALL Frames
L

Enclave Except. Structures

However, this attack doesn‘t work if SGX-Shield
randomizes the SGX address space

Revisited Attack to Bypass SGX-Shield

Untrusted Runtime System (uRTS)

L T
Trusted Runtime System (tRTS)

ORET Primitive =3 CONT Primitive
Enclave Code
Counterfeit State 34}§ r Memory Write 4J

Information

Shellcode Enclave Stack

Stealing Keys Counterfeit State
Fake OCALL Frames

Enclave Except. Structures

Possible Defenses

* Removing SDK from enclave memory?
* Not feasible as OCALL, ECALL, AEX require the tRTS

 Randomizing SDK code?
* Challenging, the tRTS is accessed through fixed entry
points
* Discovering vulnerabilities beforehand?

* Last part of this talk: research on fuzzing and symbolic
execution

43

Background: Bug Discovery Techniques

+ Symbolic Execution * Fuzzing
+ Emulate the program based on encoding * Probabilistically explore program paths
the program state as symbolic variables * Find new inputs with random mutation
+ Utilize solver to find feasible crashing
paths

§ Feedback
i (coverage)

Yes

P
<

Generate
Crashing Input

TrustZone OS Fuzzing

Feedback Fuzzer Inputs Initial Testcases

(Coverage, Crash Info)

Inputs

Emulator _
— Checkpoint R

Normal World & Restore
Input

Input TrustZone OS

: Record Coverage
Agent “Trusted” Agent : and Crash

- Information
Syscall :

v

. A

Emulated Hardware = Emulated =
SR EEER HE BB EEER SMC
Secure Monitor

Symbolic Execution of SGX Enclaves

Emulated

enclave.so Address Space

Enclave Code

Enclave Data

. Enclave Stack
Unconstrained

State

Harware-assisted application security is vital to
implement trustworthy systems and enhanced
security services - control-flow attestation

However, we need to make sure that an attacker
cannot exploit bugs inside the TEE = return-
oriented programming

Hence, research on bug finding in TEE code is
crucial = fuzzing, symbolic execution

